سه‌شنبه ۲۹ مهر ۱۳۹۳ ه‍.ش.

جغرافیای کاربردی

از: شبکۀ اینترنتی آفتاب

جغرافياى اقتصادی

جغرافیای کاربردی


فهرست مندرجات


در طى دو دههٔ اخیر جغرافى‌دانان معروف جهان تعاریف گوناگونى از جغرافیاى کاربردى به‌شرح زیر ارایه نموده‌اند:

    - جغرافیاى کاربردى شاخهٔ کاملاً تخصصى در جغرافیا است و مشتمل بر گردآورى اطلاعات، تحلیل مسایل و روند تصمیم‌گیرى مى‌باشد.

    - بنابر نظر «براین بری»، جغرافیاى کاربردى برخورد عملى با مسایل و مشکلات خاص در قلمرو علم جغرافیا است.

    - جغرافیاى کاربردى عبارت از به‌کار گرفتن روش‌ها و تکنیک‌هاى جغرافیایى در شناخت و تحلیل مسایل و مشکلات مهم جغرافیایى است.

    - منظور از جغرافیایى کاربردی، کاربرد عملى تحقیقات جغرافیایى در تأمین نیازهاى اجتماعی، اقتصادی، نظامى و مهمترین از همه برنامه‌ریزى‌هاى ناحیه‌اى و فیزیکى در مقیاس محلی، منطقه‌اى و ملى است.

اهداف اصلى جغرافیاى کاربردى به‌عنوان یک شاخه علمى و تخصصی، ارایه مسیرى منطقى در بهره‌گیرى از منابع طبیعى و انسانی، جلوگیرى از اتلاف منابع طبیعی، ممانعت از به‌کارگیرى غیرعلمى آن‌ها، پرهیز از عدم استفاده از منابع محیطى و سرانجام توسعه مطلوب جامعه انسانى و حفظ و تعالى محیط زندگى انسان است. بدین ترتیب، جغرافیاى کاربردى با برنامه‌ریزى پیوندى نزدیک دارد.


جغرافياى اقتصادى کاربردى

جغرافیاى اقتصادى کاربردى نیز شاخه تخصصى در جغرافیاى اقتصادى است. هدف آن فراهم آوردن و به‌کار گرفتن مفاهیم، الگوها، تکنیک‌ها و مدل‌هاى جغرافیایى در شناخت، تحلیل و حل و فصل مسایل و مشکلات مکانى - فضایى ناشى از اشکال تولید و نظام‌هاى معیشتى و مکان‌هاى تولید و مصرف است. بدین ‌ترتیب، مسایل مورد تحقیق در جغرافیاى اقتصادى کاربردى با جغرافیاى اقتصادى محض تفاوت دارد. چه جغرافیاى اقتصادى کاربردى بر پیش فرض‌هاى واقعى و شرایط عینى حل مسایل و مشکلات جارى تأکید مى‌کند براى مثال اثرات احداث فرودگاه بر قیمت اراضى مجاور، استقرار بهینه مراکز خدمات آموزشى و بهداشتی، مکان‌گزینى انواع صنایع، اثرات ایجاد بناد آزاد در توسعه منطقه‌اى و ملی، بازتاب‌هاى ایجاد شهرهاى جدید صنعتى در اقتصاد محلى و منطقه‌ای، تعیین مراکز خدمات روستایی، آثار فضایى احداث راه‌هاى ارتباطى و ... همه نمونه‌هایى از موضوعات مورد توجه در جغرافیاى اقتصادى کاربردى است. با این وجود، تصور جدایى مطلق بین جغرافیاى محض و جغرافیاى کاربردى اشتباه است. زیرا بدون بنیان نظرى و علمى لازم ورود به عرصهٔ کاربرد بى‌نتیجه خواهد بود. به‌عنوان مثال، برخورد علمى با آثار ناشى از احداث فرودگاه و به‌ویژه اثر آن در قیمت اراضى پیرامونی، بدون توجه به بهرهٔ موقعیتى ممکن نیست. به همین ترتیب، مکان گزینى صحیح مراکز درمانى و یا مراکز خرید، بدون رعایت اصل حداقل نمودن فاصله، منطقى و نتیجه‌بخش نخواهد بود. از این‌رو، باید گفت که جغرافیاى اقتصادى محض و کاربردى روابط متقابل و مکمل دارند. یعنى مفاهیم و روش‌هاى جغرافیاى محض، جغرافیاى اقتصادى کاربردى را غنى مى‌کند و در مقابل، جغرافیاى اقتصادى کاربردی، به جغرافیاى اقتصادى محض اعتبار بیشترى مى‌بخشد و بدین طریق هر دو، اعتلأ جغرافیاى اقتصادى را سبب مى‌گردند.


مراحل اساسى تحقیق در جغرافیاى اقتصادى کاربردی

روش تحقیق در جغرافیاى اقتصادى کاربردى به‌طور عام در راستاى روش علمى و به‌طور خاص در چارچوب روش تحقیق جغرافیا قرار دارد. اساس تحقیق در جغرافیاى اقتصادى محض و کاربردى در بیشتر موارد یکسان است. تفاوت این دو عمدتاً در نوع و کیفیت اطلاعات لازم، جهت‌گیرى تحلیل‌ها و نیز فرآیند تصمیم‌گیرى و اعلام موضع عملى است که اختصاص به جغرافیاى کاربردى دارد.

مراحل اساسى و کلى تحقیق در جغرافیاى اقتصادى کاربردى به‌شرح زیر مى‌باشد:

    - انتخاب موضوع (مسئله، مشکل)

    - مطالعه مقدماتى و طرح و تجدید مسئله

    - گردآورى اطلاعات و دسته‌بندى آن‌ها

    - تجزیه و تحلیل مسائل و مشکلات

    - ارزیابى راه‌حل‌هاى گوناگون

    - انتخاب راه‌حل بهینه و تصمیم‌گیری: موضع‌گیرى عملى نسبت به آینده.

تعیین و تعریف مسئله مورد تحقیق به منزلهٔ بنیانى‌ترین قدم در راستاى نیل به راه‌حل تلقى مى‌شود. دقت نظر دربارهٔ تعیین دقیق و جامع مسئله به نوبه خود در به‌دست دادن نوع اطلاعات و نحوهٔ تجزیه و تحلیل آن‌ها مؤثر است. گام‌هاى بعدى فرآیند تحقیق در گرو تعیین دقیق، کامل و جامع مسئله موردنظر است. وجود ابهام در تعریف و تعیین مسئله خود موجب راه‌حل‌ها و گزینه‌هاى متعددى مى‌گردد و نتایج مطلوب و راه‌گشائى ندارد. اهمیت بیان تفضیلى و منطقى مسئله و موضوع تحیقى در جغرافیاى اقتصادى نظرى و جغرافیاى کاربردى هر دو به تساوى مطرح هستند.

نخستن گام بنیانى در تعریف مسئله مورد تحقیق به‌ویژه در جغرافیاى اقتصادى کاربردی، درک شرایط زمینه‌اى است که ضروریت انجام تحقیق و ارائه و راه‌حل مسئله را توجیه مى‌کند. نحوهٔ درک این شرایط از موقعیتى به موقعیت دیگر متفاوت است. دومین گام در تعریف مسئله، تفکیک و تجزیه مسئله به اجزاء کوچک‌تر و نحوهٔ ارتباط هریک از اجزاء با یکدیگر است. به‌طور خلاصه در تعیین و تعریف مسئله، نخست محقق باید از طریق فهم شرایط زمینه و اجزاء تشکیل‌دهندهٔ مسئلهٔ، به بررسى آن بپردازد.

پژوهشگر مى‌تواند به تفکر دربارهٔ نیروهاى درونى و بیرونى مرتبط با مسئله بپردازد. عوامل درونى مشتمل بر اجزاء قابل تعریف و روابط کارکردى حاکم است. نیروهاى خارجی، عواملى هستند که با توجه به ساختار مسئله بیرونى به ‌حساب مى‌آیند، ولى اثراتى بر روى مسئله مورد تحقیق دارند. این عوامل معرف شرایط زمینه‌اى هستند که باید در راستاى ارائه راه‌حل مورد توجه قرار گیرند. بدین ترتیب، موضوع و مسئله تحقیق به منزلهٔ بخشى از یک مسئله مجزا و بزرگتر تلقى مى‌شود. عدم توجه به مسئله مورد تحقیق در داخل یک سیستم بزرگتر، خود منجر به تعبیر غلط از مسئله مورد نظر مى‌گردد. استقرار یک کتابخانه، به‌عنوان مسئله‌اى در جغرافیاى کاربردی، مستلزم توجه به نیروها و عوامل درونى و برونى است. در این حالت نیروهاى درونى بسیار ساده هستند و اندازه (ظرفیت کتابخانه) و فضاى مورد نیاز مطالعه، مقدار بودجه و نظایر آن را مشخص مى‌کند. این نیرو به منزلهٔ نمونه‌هایى از محدودیت‌هاى درونی، مسئله مکان‌یابى کتابخانه را تحت تأثیر قرار مى‌دهند. درک محدودیت‌هاى برونى و یا شرایط زمینه‌ساز به مراتب پیچیده‌تر است: در این خصوص، نحوهٔ کاربرى اراضی، مرکزیت نسبت به ثقل جمعیت، موقعیت این واحد در دست احداث نسبت دیگر کتابخانه‌ها، الگوى فضائى بهره موقعیتی، بررسى اثرات زیست‌محیطى و مسئله ترافیکى به‌عنوان مهمترین عوامل و محدودیت‌هاى برونى باید مورد توجه قرار گیرد، نادیده گرفتن این عوامل زمینه‌ساز حتى در سایهٔ توجه دقیق به عوامل درونی، منجر به مکان‌یابى ناقص و فاقد کارآئى لازم مى‌گردد.

پس از تعیین و تعریف دقیق مسئله، دسترسى به اطلاعات مناسب براى شناخت ابعاد مسئله گام بعدى است. البته دسترسى به اطلاعات چندان آسان نیست. سرشمارى آمارى اغلب فاقد تمامى اطلاعات لازم است. بنابراین پژوهشگرى میدانى و ایجاد نقشه‌ها و به‌کارگیرى عکس‌هاى هوائى و ماهواره‌اى در جهت تکمیل اطلاعات بسیار مؤثر است. برخى از موضوعات تحقیقى به اطلاعاتى از درون آرشیوها و مآخذ تاریخى نیاز دارد. در مواردى ضرورت تحقیق، دسترسى به گزارش‌هاى دولتى معتبر را یادآورى مى‌کند. به هر حال، اطلاعات باید بسیار مرتبط و مناسب با مسئله تحقیق باشد چراکه در غیر این صورت دسترسى به راه‌حل بهینه امکان‌پذیر نمى‌شود.

گام بعدی، انجام تجزیه و تحلیل به‌منظور ارائه راه‌حل است. نوع روش تجزیه و تحلیل، سؤالات عنوان شده در طرح مسئله به اطلاعات گردآورى شده بستگى دارد. داده‌ها در کل به سه دسته تقسیم‌بندى مى‌شوند. اولین ساده‌ترین و ابتدائى‌ترین نوع اطلاعات اسمى (Nominal) و غیر کمى است. این اطلاعات فاقد نظم و ترتیب به لحاظ اندازه و ارزش هستند. نمونه این نوع داده‌ها، تقسیم جمعیت به دو گروه مردان و زنان، جهات اصلى در جغرافیا و یا انواع وسایل نقلیه و مشاهدات مربوط به آن‌ها را در بر مى‌گیرد. نوع دوم داده‌ها و اطلاعات، مشتمل بر داده‌هاى منظم و ردیفى (Ordinal) بوده، در این حالت مى‌توان داده‌ها را به لحاظ مقدار مرتب کرد. ولى على‌رغم ارزش مقداری، امکان تعیین میزان تفاوت مقدور نیست. مثلاً طبقه‌بندى شهرها به بخش‌هائى از نظر اولویت زیست، گرچه بیانگر نظم و ترتى اهمیت است. با این وجود، مقدار این اولویت و تفاوت را مشخص نمى‌کند. نوع سوم، داده‌هاى کمى با رعایت متساوى البعد (Interval) هستند که خود در برگیرندهٔ اطلاعات بسیار متنوعى است. در این نوع داده‌ها میزان و فاصلهٔ هر گروه مشخص است و ارزیابى آن‌ها نیز از طریق واحد طول، درآمد و غیره امکان‌پذیر خواهد بود.

گام بعد، ارزیابى راه‌حل‌هاى گوناگون مسئله است. در این مرحله محقق جواب‌هاى گوناگون را به سؤال یا سؤالات مطرح شده در پژوهش‌ مى‌دهد و سود و زیان هر یک از راه‌حل‌هاى خود را مشخص مى‌نماید.

در گام آخر، با توجه به ملاک‌هاى علمى و تجارت عینى که در طى تحقیق کسب شده است. راه‌حل بهینه معلوم و تصمیم‌گیرى مى‌شود. محقق در این مرحله مواضع عملى خود را دربارهٔ متغیرهاى اصلى و فرعى مؤثر در مسئله یا موضوع، یا مشکل، اعلام مى‌کند.

یکى از موارد مهم در روند تحقیق جغرافیا اقتصادى کاربردی، شناخت و به‌کارگیرى مدل‌ها و تکنیک‌هایى است که در مرحله گردآورى اطلاعات و تجزیه و تحلیل موضوع لازم مى‌باشد.


شاخص‌هاى مکانى درجه صنعتى بودن (Locational Indices)

صنایع کارخانه‌اى در چارچوب اقتصاد ملى از طرق شاخص‌هاى گوناگونى قابل ارزیابى هستند. استفاده از شاخص تولید ناخالص داخلى (Growth Demestic Product)، حجم فروش سالانه، ارزش افزودهٔ کالاهاى صنعتى و سهم شاغلین در صنایع کارخانه‌ای، از جمله ساده‌ترین این شاخص‌ها محسوب مى‌شوند.

اهمیت اقتصادى واحد تولید صنعتى همچنین برحسب درصد کل فروش در بازار و حوزه نفوذ آن نیز قابل سنجش و ارزیابى است. بدین‌سان، مقایسهٔ میان رقم کل ارزش فروش اقلام صنعتى در دو مقطع زمانى بیانگر میزان اهمیت واحد صنعتى مورد بحث در مقطع مزبور خواهد بود.

چپمن و واکر استفاده از شاخص تمرکز جامع (Aggregate Concentration) را که مبین درصد سهم تولیدات خالص صنعتى در مقیاس ملى و یا میزان فروش K عدد (۱۰۰ عدد) از بزرگترین واحدهاى تولیدى به ترتیب اهمیت و اعتبار است، توصیه نموده‌اند (Chapman & Walker.1992.p.80). نسبت تمرکز جهانى در ارتباط با قدرت سازمان‌ها و شرکت‌هاى چندملیتى و نقش آن‌ها در اقتصاد جهانى نیز از دیگر شاخص‌ها محسوب مى‌شوند. منظور از این شاخص عبارت است از نسبت و سهم کل فروش مرتبط با ۵۰۰ شرکت عمده چندملیتی[۱].

اوریت (Averitt) از دو واژهٔ مراکز تولید هسته‌اى (Core production center) و پیرامونى (Periphery production center) در زمینهٔ ارزیابى درجه اهمیت صنعت صحبت کرده است. به‌نظر وى منظور از واحدهاى تولید هسته‌ای، سازمان‌هاى بزرگ تجارى هستند که به منزلهٔ هسته‌هاى بنیادى و محورى اقتصادى جامعه محسوب مى‌شوند و سهم مهمى از تولیدات و پتانسیل‌هاى سوددهى را به خود اختصاص داده‌اند. از طرف دیگر منظور از مراکز تولید صنعتى پیرامونی، واحدهاى تولیدى کوچک و متوسط هستند.[٢]


شاخص خارج قسمت مکانی

یکى از ابتدائى‌ترین و متداول‌ترین شاخص‌هاى سنجش مکانى صنعت، خارج قسمت مکانى (Location Quotient)، است. منظور از این شاخص نسبت میان دو نسبت است. کاربرد این شاخص در شرایطى که هدف نمایش توزیع نسبى باشد، به مراتب مناسب‌تر است. توزیع نیروى کار متخصص در میان مناطق گوناگون یک شهر در مقایسه با کل نیروى کار، نمونه‌اى از کاربرد روش فوق محسوب مى‌شود. در این مثال چناچه شهر داراى ۵ بخش با مجموع ۱۰۰ نفر نیروى متخصص باشد، در این صورت با تقسیم کل نیروى متخصص (۱۰۰) بر عدد ۵ (تعداد ناحیه) نسبت نیروى متخصص در هریک از خرده نواحى به‌دست خواهد آمد. مرحله بعدى بررسى نسبت کل کارکنان در هریک از از نواحى مذکور است. بدین ترتیب دو لیست محاسبه گردیده است، که اولى صورت کسر خارج قسمت مکانى یعنى سهم نیروى متخصص هریک از خرده نواحى و لیست معمولاً در عدد ۱۰۰ ضرب مى‌کنند. در شرایطى که هر دو نوع توزیع یعنى نسبت کارگران متخصص و نسبت کل نیروى کار با یکدگیر یکسان باشند۷ رقم خارج قسمت مکانى معادل ۱۰۰ خواهد بود.

فرمول خارج قسمت مکانى به شرح زیر است:

Xi / ∑Xi
LQ = × ۱۰۰
Ni / ∑Ni

X = نیروى متخصص

N = کل نیروى کار

i = خرده ناحیه مورد بحث

از خارج قسمت مکانى به‌دلیل توانائى آن در بیان و نمایش توزیع جغرافیایى پدیده‌ها و سهولت محاسبه در موارد متعدد دیگرى نظیر بررسى نحوهٔ توزیع نسبى صنایع کارخانه‌اى و توزیع نسبى شاغلین صنعت خاص در مکان‌هاى گوناگون، در مقایسه با کل شاغلین استفاده مى‌شود.


شاخص عدم تشابه

دومین شاخص مکانی، شاخص عدم تشابه (Dissimilarity Index) است. در حالى‌که شاخص خارج قسمت مکانی، توزیع فضائى نسبى یک زیر مجموعه را نسبت به کل مجموعه محاسبه مى‌کند، این شاخص توزیع نسبت و یا سهم دو زیر مجموعه را نسبت به هم ارزیابى مى‌نماید. مثلاً، سهم شاغلین متخصص در شهر ممکن است با سهم شاغلین بخش خدمات سنجیده شود. ارزش مقدارى این شاخص از صفر تا ۱۰۰ متغیر است. وضعیت صفر نشان مى‌دهد که دو زیر مجموعه، توزیع کاملاً یکسان دارند و در حالت ۱۰۰ توزیع دو زیرمجموعه کاملاً با یکدیگر متفاوت است.

محاسبه این شاخص نیز به آسانى امکان‌پذیر است. ابتدا نسبت کارگران متخصص بخش صنعت در خرده ناحیه (i) به کارگران متخصص صنعتى در کل خرده نواحى محاسبه مى‌شود (Xi / ∑Xi) در مرحله بعدى نسبت کارکنان بخش خدمات در خرده ناحیه (i) به کارکنان بخش خدمات در کل خرده نواحى محاسبه مى‌شود (Yi / ∑Yi) آنگاه تفاضل میان این دو نسبت محاسبه مى‌گردد: [(Xi / ∑Xi) - (Yi / ∑Yi)] سپس با تقسیم این تفاضل بر عدد ۲ و ضرب نمودن آن در عدد ۱۰۰، درصد شاخص عدم تشابه محاسبه مى‌شود:

N (Xi / ∑Xi) - (Yi / ∑Yi)
I.D = × ۱۰۰
i=1 2


شاخص جدایى‌گزینى (Segregation)

نسبت دیگر شاخص جدایى‌گزینى است. وجه تسمیه این شاخص، کاربرد آن در مطالعه جدایى‌گزینى بخش مسکونى به‌خصوص بخش سیاه‌پوست‌نشین است. این نسبت وجوهى از شاخص خارج قسمت مکانى و شاخص عدم تشابه را محاسبه مى‌کند. بدین مضمون که همانند خارج قسمت مکانى روابط میان دو زیر گروه و خود گروه سنجیده مى‌شود و هم‌چنین نظیر شاخص عدم تشابه درجه شباهت و یا عدم شباهت فضایى در خصوص نحوهٔ توزیع این متغیر محاسبه مى‌گردد.

N (Xi / ∑Xi) - (Ni / ∑Ni)
I.S = × ۱۰۰
i=1 2

در شرایطى که به‌عنوان مثال I.S مساوى با ۲۵ باشد، به‌منظور همسان نمودن نحوهٔ توزیع کارگران متخصص با کل نیروى کار، ۲۵ درصد از کارگران متخصص باید در نواحى گوناگون دیگر جابه‌جا شوند. دامنهٔ تغییرات این شاخص همانند شاخص عدم تشابه بین صفر تا صد است.


منحنى لورنز

آخرین شاخص مکانى و در عین حال یکى از با اهمیت‌ترین آن‌ها منحنى لورنز (Lurenz curve) است. این منحنى نمایش گرافیک شاخص عدم تشابه است. از این شاخص به‌منظور نمایش درجه تمرکز ناحیه‌اى جهت مقایسه نحوهٔ توزیع و درجهٔ شباهت و همسانى استفاده مى‌شود. از منحنى لورنز براى مقایسه چندین متغیر در یک ناحیه، یک متغیر در چندین ناحیه، و تغییرات یک و یا بیش از یک متغیر در طول زمان، استفاده مى‌کنند مزایاى این منحنی، قابلیت درک آسان، نمایش گرافیکى و سهولت نحوهٔ محاسبهٔ آن است. این تکنیک به‌خصوص در شرایطى که دیگر روش‌ها فاقد کاربرد باشند، به‌کار گرفته مى‌شوند.

پنج مرحله در محاسبهٔ منحنى قابل ذکر است. چنانچه اطلاعات و داده‌هاى مربوط به دو متغیر x و y براى چندین ناحیه مفروض باشد و بخواهیم میزان تشابه میان نحوهٔ توزیع متغیرهاى X و Y را با یکدیگر مقایسه کنیم، در این صورت از این شاخص استفاده مى‌نمائیم. در ابتدا باید نسبت میان X و Y در هریک از خرده نواحى محاسبه شود (جدول محاسبات مربوط به منحنى لورنز).


جدول محاسبات مربوط به منحنى لورنز

جدول محاسبات مربوط به منحنى لورنز[٣]
ارزش تجمعى منحنى لورنزنسبت رتبه‌بندى شده
XYXYناحيهنسبتناحيهنسبتناحيه
۴۰۲۰۴۰۲۰b۰،۵b۲،۰a
۵۵۳۰۱۵۱۰c۰،۶c۰،۵b
۷۵۵۰۲۰۲۰d۱،۰d۰،۶c
۱۰۰۱۰۰۲۵۵۰a۲،۰a۱،۰d

براى سهولت این محاسبه‌ها مجموع متغیرها ۱۰۰ در نظر گرفته مى‌شود. در یک مثال فرضى خرده ناحیه (i) ارزشى برابر ۲۵ در رابطه با متغیر x (تولید ذرت) و ۵۰ در خصوص متغیر y (تولید گندم) دارد. بدین ترتیب، نسبت میان x و y، ۲ خواهد بود. مرحلهٔ بعدى ردیف و منظم کردن این نسبت‌ها از کم به زیاد است. مرحله سوم محاسبهٔ درصد هر متغیر در هریک از خرده‌نواحى است (در همه موارد مخرج کسر ۱۰۰ درنظر گرفته شده است). در مرحله چهارم نتایج مرحله سوم را در عدد ۱۰۰ ضرب مى‌کنند و مجدداً ردیف مى‌شوند. مرحلهٔ آخر مشتمل بر تعیین مواضع و نقاط و یا مشاهدات بر روى محور مختصات و ترسیم منحنى لورنز است.

در صورتى‌که توزیع فضایى دو متغیر مورد بحث دقیقاً یکسان باشد، منحنى لورنز در وضعیت T خواهد بود (شکل منحنى لورنز).

منحنى لورنز

T در حقیقت معرف توزیع مورد انتظار است (Expected Distribution) است. منحنى حالت L نوع واقعى و محاسباتى است و معرف آن است که به چه میزان و تا چه اندازه توزیع دو متغیر از یکدیگر فاصله دارند. به‌عبارت دیگر میزان انحراف از توزیع متجانس و همگن را معرفى مى‌کند. در شکل مزبور منطقه میان دو خط T و منحنى L که با A نام‌گذارى شده است، میزان دامنه و انحراف از توزیع فضائى طبیعى را ارزیابى مى‌کند. محدودهٔ B مبین بقیه فضاى نمودار است.

بدین ترتیب با استفاده از رابطهٔ زیر مى‌توان درجهٔ انحراف از توزیع نظرى را ارزیابى کرد:

A
D =
A+B

D = میزان انحراف

A = انحراف واقعی

A+B = حداکثر میزان انحراف ممکن

دامنه D بین ۰ تا ۱ در تغییر است. ۱ بیانگر حداکثر انحراف است. این منحنى شاخص توصیفى و گرافیکى بسیار مفید بوده و در شرایط گوناگونى به‌کار برده مى‌شود.[۴]


[] يادداشت‌ها


يادداشت ۱: اين مقاله برای دانش‌نامه‌ی آريانا توسط مهدیزاده کابلی ارسال شده است.



[] پی‌نوشت‌ها

[۱]- s largest industrial enterprises westmead Farborough. Gower. 1981.
[٢]- R.T.Averitt the dual Economy: the dynamic of American industry structure. Norton. 1986.
[٣]- Source: Wheeler & Muller.1986. P. 383.
[۴]- جغرافیای اقتصادی، شبکۀ اینترنتی آفتاب



[] جُستارهای وابسته







[] سرچشمه‌ها

شبکۀ اینترنتی آفتاب